Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models A Rau, C Maugis-Rabusseau, ML Martin-Magniette, G Celeux
Bioinformatics 31 (9), 1420-1427, 2015
88 2015 Transformation and model choice for RNA-seq co-expression analysis A Rau, C Maugis-Rabusseau
Briefings in bioinformatics 19 (3), 425-436, 2018
83 2018 Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis G Rigaill, S Balzergue, V Brunaud, E Blondet, A Rau, O Rogier, J Caius, ...
Briefings in bioinformatics 19 (1), 65-76, 2018
62 2018 Clustering transformed compositional data using K -means, with applications in gene expression and bicycle sharing system data A Godichon-Baggioni, C Maugis-Rabusseau, A Rau
Journal of Applied Statistics 46 (1), 47-65, 2019
55 2019 Comparing model selection and regularization approaches to variable selection in model-based clustering G Celeux, ML Martin-Magniette, C Maugis-Rabusseau, AE Raftery
Journal de la Societe francaise de statistique 155 (2), 57-71, 2014
41 2014 Variable selection in model-based clustering and discriminant analysis with a regularization approach G Celeux, C Maugis-Rabusseau, M Sedki
Advances in Data Analysis and Classification 13, 259-278, 2019
38 2019 Adaptive density estimation for clustering with Gaussian mixtures C Maugis-Rabusseau, B Michel
ESAIM: Probability and Statistics 17, 698-724, 2013
38 2013 On the estimation of mixtures of Poisson regression models with large number of components P Papastamoulis, ML Martin-Magniette, C Maugis-Rabusseau
Computational Statistics & Data Analysis 93, 97-106, 2016
31 2016 Clustering high-throughput sequencing data with Poisson mixture models A Rau, G Celeux, ML Martin-Magniette, C Maugis-Rabusseau
Inria, 2011
27 2011 A sparse variable selection procedure in model-based clustering C Meynet, C Maugis-Rabusseau
21 2012 Parameter recovery in two-component contamination mixtures: The strategy S Gadat, J Kahn, C Marteau, C Maugis-Rabusseau
14 2020 SuperMix: sparse regularization for mixtures Y De Castro, S Gadat, C Marteau, C Maugis-Rabusseau
The Annals of Statistics 49 (3), 1779-1809, 2021
11 2021 Non-asymptotic detection of two-component mixtures with unknown means B Laurent, C Marteau, C Maugis-Rabusseau
11 2016 Multidimensional two-component Gaussian mixtures detection B Laurent, C Marteau, C Maugis-Rabusseau
7 2018 SelvarClustMV: Variable selection approach in model-based clustering allowing for missing values C Maugis-Rabusseau, ML Martin-Magniette, S Pelletier
Journal de la Société Française de Statistique 153 (2), 21-36, 2012
7 2012 SelvarMix: AR package for variable selection in model-based clustering and discriminant analysis with a regularization approach M Sedki, G Celeux, C Maugis-Rabusseau
INRIA Techical report, 2014
6 2014 SelvarMix: Regularization for variable selection in model-based clustering and discriminant analysis M Sedki, G Celeux, C Maugis-Rabusseau
R package version 1 (1), 2017
5 2017 The DendrisCHIP® Technology as a New, Rapid and Reliable Molecular Method for the Diagnosis of Osteoarticular Infections E Bernard, T Peyret, M Plinet, Y Contie, T Cazaudarré, Y Rouquet, ...
Diagnostics 12 (6), 1353, 2022
4 2022 Insights on the control of yeast single-cell growth variability by members of the trehalose phosphate synthase (TPS) complex S Arabaciyan, M Saint-Antoine, C Maugis-Rabusseau, JM François, ...
Frontiers in Cell and Developmental Biology 9, 607628, 2021
4 2021 IGLOO: An Iterative Global Exploration and Local Optimization Algorithm to Find Diverse Low-Energy Conformations of Flexible Molecules W Margerit, A Charpentier, C Maugis-Rabusseau, JC Schön, N Tarrat, ...
Algorithms 16 (10), 476, 2023
3 2023