Follow
Chen Qiu
Chen Qiu
Research Scientist, Bosch Center for AI
Verified email at us.bosch.com
Title
Cited by
Cited by
Year
Neural transformation learning for deep anomaly detection beyond images
C Qiu, T Pfrommer, M Kloft, S Mandt, M Rudolph
International conference on machine learning, 8703-8714, 2021
1442021
Latent Outlier Exposure for Anomaly Detection with Contaminated Data
C Qiu, A Li, M Kloft, M Rudolph, S Mandt
International Conference on Machine Learning, 18153-18167, 2022
602022
Raising the Bar in Graph-level Anomaly Detection
C Qiu, M Kloft, S Mandt, M Rudolph
International Joint Conference on Artificial Intelligence, 2022
532022
Learning topometric semantic maps from occupancy grids
M Hiller, C Qiu, F Particke, C Hofmann, J Thielecke
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
332019
Zero-shot anomaly detection via batch normalization
A Li, C Qiu, M Kloft, P Smyth, M Rudolph, S Mandt
Advances in Neural Information Processing Systems 36, 2024
202024
Detecting anomalies within time series using local neural transformations
T Schneider, C Qiu, M Kloft, DA Latif, S Staab, S Mandt, M Rudolph
arXiv preprint arXiv:2202.03944, 2022
202022
Deep anomaly detection under labeling budget constraints
A Li, C Qiu, M Kloft, P Smyth, S Mandt, M Rudolph
International Conference on Machine Learning, 19882-19910, 2023
152023
Federated text-driven prompt generation for vision-language models
C Qiu, X Li, CK Mummadi, MR Ganesh, Z Li, L Peng, WY Lin
The Twelfth International Conference on Learning Representations, 2024
12*2024
Switching recurrent Kalman networks
G Nguyen-Quynh, P Becker, C Qiu, M Rudolph, G Neumann
arXiv preprint arXiv:2111.08291, 2021
42021
Anomaly detection of tabular data using llms
A Li, Y Zhao, C Qiu, M Kloft, P Smyth, M Rudolph, S Mandt
arXiv preprint arXiv:2406.16308, 2024
22024
Model Selection of Anomaly Detectors in the Absence of Labeled Validation Data
C Fung, C Qiu, A Li, M Rudolph
arXiv preprint arXiv:2310.10461, 2023
22023
Switching recurrent kalman network
G Nguyen, C Qiu, P Becker, M Rudolph, G Neumann
US Patent App. 17/516,330, 2023
22023
Self-Supervised Anomaly Detection with Neural Transformations
C Qiu
Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 2023
22023
Forecasting with deep state space models
C Qiu, MR Rudolph
US Patent App. 17/407,621, 2022
22022
History marginalization improves forecasting in variational recurrent neural networks
C Qiu, S Mandt, M Rudolph
Entropy 23 (12), 1563, 2021
2*2021
Uncertainty-aware Evaluation of Auxiliary Anomalies with the Expected Anomaly Posterior
L Perini, M Rudolph, S Schmedding, C Qiu
arXiv preprint arXiv:2405.13699, 2024
12024
Anomalous region detection with local neural transformations
M Rudolph, C Qiu, T Schneider
US Patent App. 17/372,204, 2023
12023
Machine learned anomaly detection
C Qiu, MR Rudolph, T Pfrommer
US Patent App. 17/651,917, 2022
12022
Adaptively centered representation for zero-shot anomaly detection methods
C Qiu, M Rudolph, A Li
US Patent App. 18/170,253, 2024
2024
Method and system for graph level anomaly detection
C Qiu, M Rudolph
US Patent 11,978,188, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20