Follow
Marco Eckhoff
Marco Eckhoff
Verified email at phys.chem.ethz.ch
Title
Cited by
Cited by
Year
From molecular fragments to the bulk: development of a neural network potential for MOF-5
M Eckhoff, J Behler
Journal of chemical theory and computation 15 (6), 3793-3809, 2019
1072019
High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions
M Eckhoff, J Behler
npj Computational Materials 7 (1), 170, 2021
532021
Predicting oxidation and spin states by high-dimensional neural networks: Applications to lithium manganese oxide spinels
M Eckhoff, KN Lausch, PE Blöchl, J Behler
The Journal of Chemical Physics 153 (16), 2020
342020
Closing the gap between theory and experiment for lithium manganese oxide spinels using a high-dimensional neural network potential
M Eckhoff, F Schönewald, M Risch, CA Volkert, PE Blöchl, J Behler
Physical Review B 102 (17), 174102, 2020
312020
Insights into lithium manganese oxide-water interfaces using machine learning potentials
M Eckhoff, J Behler
The Journal of Chemical Physics 155 (24), 244703, 2021
252021
Strained hydrogen bonding in imidazole trimer: A combined infrared, Raman, and theory study
T Forsting, J Zischang, MA Suhm, M Eckhoff, B Schröder, RA Mata
Physical Chemistry Chemical Physics 21 (11), 5989-5998, 2019
192019
Lifelong machine learning potentials
M Eckhoff, M Reiher
Journal of Chemical Theory and Computation 19 (12), 3509-3525, 2023
182023
Hybrid density functional theory benchmark study on lithium manganese oxides
M Eckhoff, PE Blöchl, J Behler
Physical Review B 101 (20), 205113, 2020
182020
The Guinness molecules for the carbohydrate formula
J Altnöder, K Krüger, D Borodin, L Reuter, D Rohleder, F Hecker, ...
The Chemical Record 14 (6), 1116-1133, 2014
102014
Structure and thermodynamics of metal clusters on atomically smooth substrates
M Eckhoff, D Schebarchov, DJ Wales
The Journal of Physical Chemistry Letters 8 (21), 5402-5407, 2017
82017
A full additive QM/MM scheme for the computation of molecular crystals with extension to many-body expansions
TL Teuteberg, M Eckhoff, RA Mata
The Journal of Chemical Physics 150 (15), 2019
72019
SCINE—Software for chemical interaction networks
T Weymuth, JP Unsleber, PL Türtscher, M Steiner, JG Sobez, CH Müller, ...
The Journal of Chemical Physics 160 (22), 2024
32024
A criticial view on e occupancy as a descriptor for oxygen evolution catalytic activity in LiMnO nanoparticles
F Schönewald, M Eckhoff, M Baumung, M Risch, PE Blöchl, J Behler, ...
arXiv preprint arXiv:2007.04217, 2020
32020
CoRe optimizer: an all-in-one solution for machine learning
M Eckhoff, M Reiher
Machine Learning: Science and Technology 5 (1), 015018, 2024
22024
ReiherGroup/CoRe_optimizer: Release 1.0. 0
M Eckhoff, M Reiher
12024
NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance
RT Husistein, M Reiher, M Eckhoff
arXiv preprint arXiv:2408.08776, 2024
2024
ReiherGroup/NEAR: Release 1.0. 0
RT Husistein, M Reiher, M Eckhoff
2024
Investigation of Lithium Manganese Oxides Using High-Dimensional Neural Networks
M Eckhoff
Georg-August-Universität Göttingen, 2022
2022
The system can't perform the operation now. Try again later.
Articles 1–18