Llama 2: Open foundation and fine-tuned chat models H Touvron, L Martin, K Stone, P Albert, A Almahairi, Y Babaei, ... arXiv preprint arXiv:2307.09288, 2023 | 10737 | 2023 |
The llama 3 herd of models A Dubey, A Jauhri, A Pandey, A Kadian, A Al-Dahle, A Letman, A Mathur, ... arXiv preprint arXiv:2407.21783, 2024 | 1318 | 2024 |
Effective long-context scaling of foundation models W Xiong, J Liu, I Molybog, H Zhang, P Bhargava, R Hou, L Martin, ... arXiv preprint arXiv:2309.16039, 2023 | 143 | 2023 |
Llama 2: open foundation and fine-tuned chat models. arXiv H Touvron, L Martin, K Stone, P Albert, A Almahairi, Y Babaei, ... arXiv preprint arXiv:2307.09288, 2023 | 117 | 2023 |
Llama 2: Open foundation and fine-tuned chat models. arXiv 2023 H Touvron, L Martin, K Stone, P Albert, A Almahairi, Y Babaei, ... arXiv preprint arXiv:2307.09288, 0 | 111 | |
Llama 2: Open foundation and fine-tuned chat models, 2023b H Touvron, L Martin, K Stone, P Albert, A Almahairi, Y Babaei, ... URL https://arxiv. org/abs/2307.09288, 2023 | 98 | 2023 |
Llama 2: open foundation and fine-tuned chat models. CoRR abs/2307.09288 (2023) H Touvron, L Martin, K Stone, P Albert, A Almahairi, Y Babaei, ... arXiv preprint arXiv:2307.09288 10, 2023 | 57 | 2023 |
A theory on adam instability in large-scale machine learning I Molybog, P Albert, M Chen, Z DeVito, D Esiobu, N Goyal, PS Koura, ... arXiv preprint arXiv:2304.09871, 2023 | 22 | 2023 |
Role of sparsity and structure in the optimization landscape of non-convex matrix sensing I Molybog, S Sojoudi, J Lavaei Mathematical programming, 1-37, 2022 | 11 | 2022 |
Towards robust and scalable power system state estimation M Jin, I Molybog, R Mohammadi-Ghazi, J Lavaei 2019 IEEE 58th Conference on Decision and Control (CDC), 3245-3252, 2019 | 10 | 2019 |
Conic optimization for robust quadratic regression: Deterministic bounds and statistical analysis I Molybog, R Madani, J Lavaei 2018 IEEE Conference on Decision and Control (CDC), 841-848, 2018 | 9 | 2018 |
When does maml objective have benign landscape? I Molybog, J Lavaei 2021 IEEE Conference on Control Technology and Applications (CCTA), 220-227, 2021 | 7 | 2021 |
Scalable and robust state estimation from abundant but untrusted data M Jin, I Molybog, R Mohammadi-Ghazi, J Lavaei IEEE Transactions on Smart Grid 11 (3), 1880-1894, 2019 | 7 | 2019 |
Global convergence of MAML for LQR I Molybog, J Lavaei arXiv preprint arXiv:2006.00453, 2020 | 6 | 2020 |
Over-parametrization via lifting for low-rank matrix sensing: Conversion of spurious solutions to strict saddle points Z Ma, I Molybog, J Lavaei, S Sojoudi International Conference on Machine Learning, 23373-23387, 2023 | 5 | 2023 |
Conic optimization for quadratic regression under sparse noise I Molybog, R Madani, J Lavaei Journal of Machine Learning Research 21 (195), 1-36, 2020 | 5 | 2020 |
No spurious solutions in non-convex matrix sensing: Structure compensates for isometry I Molybog, S Sojoudi, J Lavaei 2021 American Control Conference (ACC), 2587-2594, 2021 | 3 | 2021 |
HaSa: Hardness and Structure-Aware Contrastive Knowledge Graph Embedding H Zhang, J Zhang, I Molybog Proceedings of the ACM on Web Conference 2024, 2116-2127, 2024 | 1 | 2024 |
REAL: Response Embedding-based Alignment for LLMs H Zhang, X Zhao, I Molybog, J Zhang arXiv preprint arXiv:2409.17169, 2024 | | 2024 |
The complexity of non-convex and conic optimization problems in data science applications I Molybog University of California, Berkeley, 2022 | | 2022 |