Numerical solution of the space fractional Fokker–Planck equation F Liu, V Anh, I Turner Journal of Computational and Applied Mathematics 166 (1), 209-219, 2004 | 860 | 2004 |

Numerical methods for fractional partial differential equations with Riesz space fractional derivatives Q Yang, F Liu, I Turner Applied Mathematical Modelling 34 (1), 200-218, 2010 | 647 | 2010 |

Stability and convergence of the difference methods for the space–time fractional advection–diffusion equation F Liu, P Zhuang, V Anh, I Turner, K Burrage Applied Mathematics and Computation 191 (1), 12-20, 2007 | 634 | 2007 |

Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term P Zhuang, F Liu, V Anh, I Turner SIAM Journal on Numerical Analysis 47 (3), 1760-1781, 2009 | 588 | 2009 |

New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation P Zhuang, F Liu, V Anh, I Turner SIAM Journal on Numerical Analysis 46 (2), 1079-1095, 2008 | 420 | 2008 |

A Fourier method for the fractional diffusion equation describing sub-diffusion CM Chen, F Liu, I Turner, V Anh Journal of Computational Physics 227 (2), 886-897, 2007 | 418 | 2007 |

A Crank--Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation F Zeng, F Liu, C Li, K Burrage, I Turner, V Anh SIAM Journal on Numerical Analysis 52 (6), 2599-2622, 2014 | 340 | 2014 |

Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation R Lin, F Liu, V Anh, I Turner Applied Mathematics and computation 212 (2), 435-445, 2009 | 330 | 2009 |

Numerical methods for solving the multi-term time-fractional wave-diffusion equation F Liu, MM Meerschaert, RJ McGough, P Zhuang, Q Liu Fractional Calculus and Applied Analysis 16, 9-25, 2013 | 320 | 2013 |

The use of finite difference/element approaches for solving the time-fractional subdiffusion equation F Zeng, C Li, F Liu, I Turner SIAM Journal on Scientific Computing 35 (6), A2976-A3000, 2013 | 319 | 2013 |

Implicit difference approximation for the time fractional diffusion equation P Zhuang, F Liu Journal of Applied Mathematics and Computing 22, 87-99, 2006 | 304 | 2006 |

Time fractional advection-dispersion equation F Liu, VV Anh, I Turner, P Zhuang Journal of Applied Mathematics and Computing 13, 233-245, 2003 | 298 | 2003 |

Analytical solution for the time-fractional telegraph equation by the method of separating variables J Chen, F Liu, V Anh Journal of Mathematical Analysis and Applications 338 (2), 1364-1377, 2008 | 281 | 2008 |

Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation CM Chen, F Liu, V Anh, I Turner SIAM Journal on Scientific Computing 32 (4), 1740-1760, 2010 | 274 | 2010 |

Numerical approximation of a fractional-in-space diffusion equation, I M Ilic, F Liu, I Turner, V Anh Fractional Calculus and Applied Analysis 8 (3), 323-341, 2005 | 259 | 2005 |

Finite difference approximations for the fractional Fokker–Planck equation S Chen, F Liu, P Zhuang, V Anh Applied Mathematical Modelling 33 (1), 256-273, 2009 | 250 | 2009 |

Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions Q Yang, I Turner, F Liu, M Ilić SIAM Journal on Scientific Computing 33 (3), 1159-1180, 2011 | 245 | 2011 |

Numerical approximation of a fractional-in-space diffusion equation (II)–with nonhomogeneous boundary conditions M Ilic, F Liu, I Turner, V Anh Fractional Calculus and applied analysis 9 (4), 333-349, 2006 | 234 | 2006 |

Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy F Zeng, C Li, F Liu, I Turner SIAM Journal on Scientific Computing 37 (1), A55-A78, 2015 | 226 | 2015 |

A new fractional finite volume method for solving the fractional diffusion equation F Liu, P Zhuang, I Turner, K Burrage, V Anh Applied Mathematical Modelling 38 (15-16), 3871-3878, 2014 | 225 | 2014 |