Follow
Valentyn Melnychuk
Valentyn Melnychuk
Institute of AI in Management, LMU Munich School of Management
Verified email at lmu.de - Homepage
Title
Cited by
Cited by
Year
Causal Transformer for Estimating Counterfactual Outcomes
V Melnychuk, D Frauen, S Feuerriegel
International Conference on Machine Learning (ICML) 162, 15293-15329, 2022
1172022
Causal machine learning for predicting treatment outcomes
S Feuerriegel, D Frauen, V Melnychuk, J Schweisthal, K Hess, A Curth, ...
Nature Medicine 30 (4), 958-968, 2024
1122024
Unsupervised anomaly detection for X-ray images
D Davletshina, V Melnychuk, V Tran, H Singla, M Berrendorf, E Faerman, ...
arXiv preprint arXiv:2001.10883, 2020
292020
Estimating average causal effects from patient trajectories
D Frauen, T Hatt, V Melnychuk, S Feuerriegel
AAAI Conference on Artificial Intelligence, 2023
272023
Knowledge graph entity alignment with graph convolutional networks: Lessons learned
M Berrendorf, E Faerman, V Melnychuk, V Tresp, T Seidl
Advances in Information Retrieval: 42nd European Conference on IR Research …, 2020
272020
Sharp Bounds for Generalized Causal Sensitivity Analysis
D Frauen, V Melnychuk, S Feuerriegel
Advances in Neural Information Processing Systems (NeurIPS), 2023
212023
Normalizing Flows for Interventional Density Estimation
V Melnychuk, D Frauen, S Feuerriegel
International Conference on Machine Learning (ICML) 202, 24361-24397, 2023
192023
Bayesian neural controlled differential equations for treatment effect estimation
K Hess, V Melnychuk, D Frauen, S Feuerriegel
International Conference on Learning Representations (ICLR), 2024
162024
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
V Melnychuk, D Frauen, S Feuerriegel
Advances in Neural Information Processing Systems (NeurIPS), 2023
132023
A Neural Framework for Generalized Causal Sensitivity Analysis
D Frauen, F Imrie, A Curth, V Melnychuk, S Feuerriegel, M van der Schaar
International Conference on Learning Representations (ICLR), 2024
112024
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
V Melnychuk, D Frauen, S Feuerriegel
International Conference on Learning Representations (ICLR), 2024
112024
Reliable Off-Policy Learning for Dosage Combinations
J Schweisthal, D Frauen, V Melnychuk, S Feuerriegel
Advances in Neural Information Processing Systems (NeurIPS), 2023
92023
Fair off-policy learning from observational data
D Frauen, V Melnychuk, S Feuerriegel
International Conference on Machine Learning (ICML), 2024
72024
Conformal prediction for causal effects of continuous treatments
M Schröder, D Frauen, J Schweisthal, K Heß, V Melnychuk, S Feuerriegel
arXiv preprint arXiv:2407.03094, 2024
42024
G-transformer for conditional average potential outcome estimation over time
K Hess, D Frauen, V Melnychuk, S Feuerriegel
arXiv preprint arXiv:2405.21012, 2024
22024
Counterfactual fairness for predictions using generative adversarial networks
Y Ma, D Frauen, V Melnychuk, S Feuerriegel
arXiv preprint arXiv:2310.17687, 2023
22023
Orthogonal representation learning for estimating causal quantities
V Melnychuk, D Frauen, J Schweisthal, S Feuerriegel
arXiv preprint arXiv:2502.04274, 2025
12025
DiffPO: A causal diffusion model for learning distributions of potential outcomes
Y Ma, V Melnychuk, J Schweisthal, S Feuerriegel
Advances in Neural Information Processing Systems (NeurIPS), 2024
12024
Matching the clinical reality: Accurate OCT-based diagnosis from few labels
V Melnychuk, E Faerman, I Manakov, T Seidl
arXiv preprint arXiv:2010.12316, 2020
12020
Differentially private learners for heterogeneous treatment effects
M Schröder, V Melnychuk, S Feuerriegel
International Conference on Learning Representations (ICLR), 2025
2025
The system can't perform the operation now. Try again later.
Articles 1–20