Follow
Su-In Lee
Su-In Lee
Computer Science & Engineering, University of Washington
Verified email at cs.washington.edu - Homepage
Title
Cited by
Cited by
Year
A unified approach to interpreting model predictions
S Lundberg, SI Lee
NeurIPS (arXiv preprint arXiv:1705.07874), 2017
266772017
From local explanations to global understanding with explainable AI for trees
SM Lundberg, G Erion, H Chen, A DeGrave, JM Prutkin, B Nair, R Katz, ...
Nature machine intelligence 2 (1), 56-67, 2020
49042020
Consistent individualized feature attribution for tree ensembles
SM Lundberg, GG Erion, SI Lee
arXiv preprint arXiv:1802.03888, 2018
21802018
Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae
JE Galagan, SE Calvo, C Cuomo, LJ Ma, JR Wortman, S Batzoglou, ...
Nature 438 (7071), 1105-1115, 2005
16272005
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery
SM Lundberg, B Nair, MS Vavilala, M Horibe, MJ Eisses, T Adams, ...
Nature biomedical engineering 2 (10), 749-760, 2018
15382018
Massively parallel functional dissection of mammalian enhancers in vivo
RP Patwardhan, JB Hiatt, DM Witten, MJ Kim, RP Smith, D May, C Lee, ...
Nature biotechnology 30 (3), 265-270, 2012
6232012
AI for radiographic COVID-19 detection selects shortcuts over signal
AJ DeGrave, JD Janizek, SI Lee
Nature Machine Intelligence 3 (7), 610-619, 2021
5842021
Efficient l~ 1 regularized logistic regression
SI Lee, H Lee, P Abbeel, AY Ng
Aaai 6, 401-408, 2006
5502006
Learning generative models for protein fold families
S Balakrishnan, H Kamisetty, JG Carbonell, SI Lee, CJ Langmead
Proteins: Structure, Function, and Bioinformatics 79 (4), 1061-1078, 2011
3872011
Explainable AI for trees: From local explanations to global understanding
SM Lundberg, G Erion, H Chen, A DeGrave, JM Prutkin, B Nair, R Katz, ...
arXiv preprint arXiv:1905.04610, 2019
3842019
Application of independent component analysis to microarrays
SI Lee, S Batzoglou
Genome biology 4, 1-21, 2003
3652003
Understanding global feature contributions with additive importance measures
I Covert, SM Lundberg, SI Lee
Advances in Neural Information Processing Systems 33, 17212-17223, 2020
3642020
A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia
SI Lee, S Celik, BA Logsdon, SM Lundberg, TJ Martins, VG Oehler, ...
Nature communications 9 (1), 42, 2018
3512018
Efficient Structure Learning of Markov Networks using -Regularization
SI Lee, V Ganapathi, D Koller
Advances in neural Information processing systems, 2006
3112006
Explaining by removing: A unified framework for model explanation
I Covert, S Lundberg, SI Lee
Journal of Machine Learning Research 22 (209), 1-90, 2021
294*2021
The proteomic landscape of triple-negative breast cancer
RT Lawrence, EM Perez, D Hernández, CP Miller, KM Haas, HY Irie, ...
Cell reports 11 (4), 630-644, 2015
2502015
Node-based learning of multiple Gaussian graphical models
K Mohan, P London, M Fazel, D Witten, SI Lee
The Journal of Machine Learning Research 15 (1), 445-488, 2014
2342014
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G Erion, JD Janizek, P Sturmfels, SM Lundberg, SI Lee
Nature machine intelligence 3 (7), 620-631, 2021
2292021
Visualizing the impact of feature attribution baselines
P Sturmfels, S Lundberg, SI Lee
Distill 5 (1), e22, 2020
2292020
Learning a prior on regulatory potential from eQTL data
SI Lee, AM Dudley, D Drubin, PA Silver, NJ Krogan, D Pe'er, D Koller
PLoS genetics 5 (1), e1000358, 2009
2292009
The system can't perform the operation now. Try again later.
Articles 1–20